$$ \begin{aligned} \ \end{aligned} $$
$$$$
$$$$
The IV model in last chapter imposes three assumptions
$$ {\tiny U_i= \begin{cases} a, & \text { if } D_i(1)=1 \text { and } D_i(0)=1 \\ c, & \text { if } D_i(1)=1 \text { and } D_i(0)=0 \\ d, & \text { if } D_i(1)=0 \text { and } D_i(0)=1 \\ n, & \text { if } D_i(1)=0 \text { and } D_i(0)=0 \end{cases} } $$
$$ {\small \begin{array}{cccl} Z=1 & D=1 & D(1)=1 & U=\mathrm{c} \text { or a } \\ Z=1 & D=0 & D(1)=0 & U=\mathrm{n} \\ Z=0 & D=1 & D(0)=1 & U=\mathrm{a} \\ Z=0 & D=0 & D(0)=0 & U=\mathrm{c} \text { or } \mathrm{n} \end{array} } $$
Disentangle Mixture Distributions and Instrumental Variable Inequalities
Testable implications
Examples
$$ \mu_{z u}=E\{Y(z) \mid U=u\}, \quad(z=0,1 ; u=\mathrm{a}, \mathrm{n}, \mathrm{c}) . $$
Theorem 22.1 Under the three assumptions, we can identify the proportions of the latent types by $$ \begin{aligned} & \pi_{\mathrm{n}}=\operatorname{pr}(D=0 \mid Z=1), \\ & \pi_{\mathrm{a}}=\operatorname{pr}(D=1 \mid Z=0), \\ & \pi_{\mathrm{c}}=E(D \mid Z=1)-E(D \mid Z=0), \end{aligned} $$ and the type-specific means of the potential outcomes by $$ \begin{aligned} \mu_{1 \mathrm{n}}=\mu_{0 \mathrm{n}} \equiv \mu_{\mathrm{n}} & =E(Y \mid Z=1, D=0) \\ \mu_{1 \mathrm{a}}=\mu_{0 \mathrm{a}} \equiv \mu_{\mathrm{a}} & =E(Y \mid Z=0, D=1) \\ \mu_{1 \mathrm{c}} & =\pi_{\mathrm{c}}^{-1}\{E(D Y \mid Z=1)-E(D Y \mid Z=0)\} \\ \mu_{0 \mathrm{c}} & =\pi_{\mathrm{c}}^{-1}[E\{(1-D) Y \mid Z=0\}-E\{(1-D) Y \mid Z=1\}] \end{aligned} $$
$$ \begin{aligned} \operatorname{pr}(D=0 \mid Z=1) & =\operatorname{pr}(U=\mathrm{n} \mid Z=1)=\operatorname{pr}(U=\mathrm{n})=\pi_{\mathrm{n}}, \end{aligned} $$
$$ \begin{aligned} \operatorname{pr}(D=1 \mid Z=0) & =\operatorname{pr}(U=\mathrm{a} \mid Z=0)=\operatorname{pr}(U=\mathrm{a})=\pi_{\mathrm{a}} . \end{aligned} $$
$$ \begin{aligned} \pi_{\mathrm{c}} & =\operatorname{pr}(U=\mathrm{c})=1-\pi_{\mathrm{n}}-\pi_{\mathrm{a}} \\ & =1-\operatorname{pr}(D=0 \mid Z=1)-\operatorname{pr}(D=1 \mid Z=0) \\ & =E(D \mid Z=1)-E(D \mid Z=0)=\tau_D, \end{aligned} $$
Remark: Although we do not know individual latent compliance types for all units, we can identify the proportions of never takers, always takers, and compliers.
Under the three assumptions, we have
$$ \mu_{1 \mathrm{a}}=\mu_{0 \mathrm{a}} \equiv \mu_{\mathrm{a}}, \quad \mu_{1 \mathrm{n}}=\mu_{0 \mathrm{n}} \equiv \mu_{\mathrm{n}} . $$
$$ E(Y \mid Z=1, D=0)=E\{Y(1) \mid Z=1, U=\mathrm{n}\}=E\{Y(1) \mid U=\mathrm{n}\}=\mu_{\mathrm{n}} . $$
$$ E(Y \mid Z=0, D=1)=E\{Y(0) \mid Z=0, U=\mathrm{a}\}=E\{Y(0) \mid U=\mathrm{a}\}=\mu_{\mathrm{a}} $$
$$~~$$
How about the observed groups $(Z=1, D=1)$ and $(Z=0, D=0)$ ?
The observed group $(Z=1, D=1)$ has both compliers and always takers, so $$ \small \begin{aligned} E(Y \mid Z=1, D=1)= & E\{Y(1) \mid Z=1, D(1)=1\} \\ = & E\{Y(1) \mid D(1)=1\} \\ = & \operatorname{pr}\{D(0)=1 \mid D(1)=1\} E\{Y(1) \mid D(1)=1, D(0)=1\} \\ & +\operatorname{pr}\{D(0)=0 \mid D(1)=1\} E\{Y(1) \mid D(1)=1, D(0)=0\} \\ = & \frac{\pi_{\mathrm{c}}}{\pi_{\mathrm{c}}+\pi_{\mathrm{a}}} \mu_{1 \mathrm{c}}+\frac{\pi_{\mathrm{a}}}{\pi_{\mathrm{c}}+\pi_{\mathrm{a}}} \mu_{\mathrm{a}} . \end{aligned} $$
Solve the linear equation above to obtain $$ \small \begin{aligned} \mu_{1 \mathrm{c}}= & \pi_{\mathrm{c}}^{-1}\left\{\left(\pi_{\mathrm{c}}+\pi_{\mathrm{a}}\right) E(Y \mid Z=1, D=1)-\pi_{\mathrm{a}} E(Y \mid Z=0, D=1)\right\} \\ = & \pi_{\mathrm{c}}^{-1}\{\operatorname{pr}(D=1 \mid Z=1) E(Y \mid Z=1, D=1) \\ & \quad-\operatorname{pr}(D=1 \mid Z=0) E(Y \mid Z=0, D=1)\} \\ = & \pi_{\mathrm{c}}^{-1}\{E(D Y \mid Z=1)-E(D Y \mid Z=0)\} . \end{aligned} $$
Based on the formulas of $\mu_{1 \mathrm{c}}$ and $\mu_{0 \mathrm{c}}$ in Theorem 22.1, we have
$$ \tau_{\mathrm{c}}=\mu_{1 \mathrm{c}}-\mu_{0 \mathrm{c}}=\{E(Y \mid Z=1)-E(Y \mid Z=0)\} / \pi_{\mathrm{c}}. $$
$$ 0 \leq \mu_{1 \mathrm{c}} \leq 1, \quad 0 \leq \mu_{0 \mathrm{c}} \leq 1, $$
$$ \small \begin{aligned} E(D Y \mid Z=1)-E(D Y \mid Z=0) & \geq 0, \\ E(D Y \mid Z=1)-E(D Y \mid Z=0) & \leq E(D \mid Z=1)-E(D \mid Z=0), \\ E\{(1-D) Y \mid Z=0\}-E\{(1-D) Y \mid Z=1\} & \geq 0, \\ E\{(1-D) Y \mid Z=0\}-E\{(1-D) Y \mid Z=1\} & \leq E(D \mid Z=1)-E(D \mid Z=0) . \end{aligned} $$
Theorem 22.2 (Instrumental Variable Inequalities) With a binary outcome $Y$, the three assumptions imply
$$ E(Q \mid Z=1)-E(Q \mid Z=0) \geq 0, $$
where $Q=D Y, D(1-Y),(D-1) Y$ and $D+Y-D Y$.
Under the three assumptions, the difference in means for $Q=$ $D Y, D(1-Y),(D-1) Y$ and $D+Y-D Y$ must all be non-negative.
Importantly, these implications only involve the distribution of the observed variables.
Rejection of the IV inequalities leads to rejection of the IV assumptions.
Balke and Pearl (1997) derived more general IV inequalities without assuming monotonicity.
IVbinary
” above, we can obtain $\hat\mu_{1c}=0.708$ and $\hat\mu_{0c}=0.629$