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Introduction

= Communities in Yelp dataset (https://www.yelp.com/dataset)
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Introduction

= Community detection is a fundamental task within network analysis
= Numerous methodologies exist for this task.:

Likelihood based methods (Zhao et al. 2012)

Convex Optimization (Chen et al., 2012)

Methods of moments (Anandkumar et al., 2014)
— Spectral clustering (Rohe et al., 2011; Lei and Rinaldo, 2015);

Algorithm 1: Spectral Clustering for SBM (SC)
Input: Adjacency matrix A; number of communities K.
Output: Membership matrix 6.
1: Compute Laplacian matrix L based on A.
2. Conduct eigen-decomposition of I and extract the top K eigenvectors (i.e., [7).
3: Conduct k-means algorithm using [/ and then output the estimated membership matrix ©.
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Introduction

= What if the network is of large scale? = great computational power
= privacy? = stored in a distributed manner across various data centers.
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Can we consider a distributed algorithm for the spectral clustering?
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Distributed Community Detection under SBM
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= Adjacency matrix A = (aj)

‘7 = 1 1 = a; = 1 indicates the ith user
= follows the jth user; otherwise
T y ajj = 0.
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Stochastic Block Model: Membership matrix

Group: 1 2 = O= (@1,'-- ,@/\/)—r ERNXK
_ = For the ith row of ©, only the
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others are 0.
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Stochastic Block Model: Connectivity Matrix

Group: 1 2

s B e RE*K with full rank

‘ gi=1 = The connection probability
between the kth and fh

[e—

I'e

‘L‘ 1 community is By

‘”S 1 =» g, =2 = The falelment Ajjin t.he adjacency

= matrix is generated independently

1 from Bernoulli(By,;) distribution.
sk
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Spectral Clustering under SBM

Lemma 1. (Lemma 3.1 in Rohe et al. (2011)).

The eigen-decomposition of £ takes the form £ = ULUT, where

U= (U, ,Un)" € RN*K collects the eigen-vectors and ¥ € RK*K is a
diagonal matrix. Further we have U = O, where i is a K x K orthogonal
matrix and ©; = ©; if and only if U; = U,.

» L=D"12AD"Y/2 where A=E(A) and D = E(D)

= Uonly has K distinct rows and the ith row is equal to the jth row if the
corresponding two nodes belong to the same community
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A Distributed Algorithm

(]

Identify pseudo centers:
C={ir, -, ix}

[ |

Step 1:

» Conduct spectral clustering on master server
to identify pseudo centers.
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Step 2:
< Broadcast pseudo centers to workers

« Complete distributed community detection task
using a SVD type algorithm.




Pilot Network Spectral Clustering on Master Server
= Suppose we have / network nodes on the master = pilot nodes.
= |n addition we distribute the pilot nodes both on master and workers.

= Conduct the spectral clustering on
the pilot network Ay € R’™*/ and

obtain the clustering centers Master: pilotnoces [N
C C T Worker 1:
CO = (COk : 1 S k S K) " ny + | network nodes
= Determine the indexes of the kth orker 2 {
pseudo centers as nz + L network nodes
~ ~ 2
ix = argmin; || Uy; — COkH .
2
i Worker M:
= Broadcast the index set of pseudo e ook nodes

centers C = {iy,- - , ik} to workers.
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Community Detection on Workers

= Suppose we distribute n,, network nodes as well as the pilot nodes on the
m th worker = n,, = I+ np,.

= Denote the corresponding sub-adjacency matrix as A(Sm) ¢ RPm*/,

= Permute the row indexes ofTA(‘Sm) to ensure that
T
Alsn) = (AT, AST)  with A = A,

= Let D,(,S”’) = ZJ.A,(-J.S“) and FJ(.J-S’") = Z,.A,S-Sm) be the out- and in-degrees of
node j and j in the subnetwork on worker m.

= Define
D) = diag { D) 1 < i< fip | € R77

F) = diag { F™ 1< j< 1} e R
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Community Detection on Workers
= The Laplacian version of A(Sm) is given by
1(Sn) — (D(Sm))_”2 A(Sn) (F(sm))‘”2  Rinx!

= Perform SVD using L(Sm) and denote the top K left singular vector matrix
as U(Sm),

= For the ith (/+1 < i< n,) node in S, the cluster label g; is estimated
by

> — ] T Sm) T(Sm)
8i = argmin, <<k jec H U = U

) .
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Extend to Degree-corrected SBM

Let T' = diag {T';, 1 < i < N} € RVN = E(A) =TOBO'T

Algorithm 4: Regularized Distributed Community Detection (r-DCD)
Input: Adjacency matrix Ay; sub-adjacency matrices {ASm)}, _; . 5 regularization parameter
7; number of communities X
Output: Membership matrix ©

STEP 1 PILOT-BASED NETWORK SPECTRAL CLUSTERING ON MASTER SERVER
STEP 1.1 Let Ly, = D;L/zAOD;:/z, where Dy, = Dy + 71. Conduct eirgen-decomposition of
Ly, and extract the top K eigenvectors (denoted in matrix Up)
STEP 1.2 Normalize each row of ﬁu with unit Ly-norm and obtain [70,.
STEP 1.3 Conduct k-means algorithm on ﬁn, and obtain clustering centers
Co=(Cuil<k<K)"
STEP 2 BROADCAST PSEUDO CENTERS TO WORKERS
STEP 2.1 Determine the indexes of the kth pseudo centers as 4 = argmin; H[A/(,,,, - éng%)
where Uy, is the ith row vector of Up,.
STEP 2.2 Broadcast the index set of pseudo centers C = {iy,+ -+ ,ix} to workers
STEP 3 COMMUNITY DETECTION ON WORKERS
STEP 3.1 Let L™ = (D(Sw) 4 71)-1/2A(S2) (F(Sw) 4 7])=1/2. Perform singular value

decomposition using L(rs”‘) and denote the top K left singular vector matrix as
T(Sm)

STEP 3.2 Normalize each row of US) with unit Ly-norm and obtain T

STEP 3.3 Use (3) to obtain the estimated community labels.
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Theoretical Properties

Theorem 3.1. (Singular Vector Convergence)

Let Ai,m > Ao m > -+ > Ak,m > 0 be the top K singular values of L£Sm)
Define §,, = min,-Di(iS'"). Then for any €, > 0 and 6, >

3log (ny, + 2/) 4+ 3log (4/€m), with probability at least 1 — ¢, it holds

- 8v6 | Klog (4 (nm +21) /em)

F >\ij 6m '

H@(sm) — YSm) QSn)

where Q(Sm) ¢ RKXK js 3 K x K orthogonal matrix.
= Remarks:

— The error bound is related to the eigen-gap Ax,m
— The upper bound is lower if the minimum out-degree d,, is higher

G Mskg

Fudan University




Theoretical Properties

Theorem 3.2. (Bound if Mis-clustering Rates)
Assume some conditions hold. Let R(Sm) denote the ratio of misclustered
nodes on worker m, then we have

RS — 0 umK?log (I/€)) N Klog (4 (ny, +20) /em) N Uma3 K + doa2, K
dobmin N MmO doc?

with probability at least 1 — ¢; — €, where v, = maxy w,(f"’).

= Remarks:
— The first term is related to the convergence of eigenvectors on the maste
— The second term is determined by convergence of singular vectors on the mth
worker.
— the third term is mainly related to the unbalanced effect o, among the
workers and ap on the master.
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Simulation: Pilot Nodes
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Simulation: Signal Strength
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Simulation: Unbalanced Effect
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Simulation: DC-SBM
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Simulation: Large Scale (N =2 x 10°, K = 20)
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Simulation: Large Scale (N = 107, K= 5)
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Simulation: Comparison
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Empirical Study: Pubmed Dataset

= The Pubmed dataset consists of 19,717 scientific publications

= Each publication is identified as one of the three classes, i.e., Diabetes
Mellitus Experimental, Diabetes Mellitus Type 1, Diabetes Mellitus Type
2. = K=23.

= The sizes of the three classes are 4,103, 7,875, and 7,739 respectively.

= The network link is defined using the citation relationships among the
publications.

= The resulting network density is 0.028%.
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Empirical Study: Pubmed Dataset
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Empirical Study: Pubmed Dataset
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Empirical Study: Pubmed Dataset
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Empirical Study: Pubmed Dataset

= The Yelp is one of the most popular online review platform and the
dataset contains 200,193 active users in the network.

= If the ith user is a friend of the jth user, then there is a connection
between the two users, i.e., Aj =1

= The resulting network density is 0.031%

= Define the relative density as RED = Denpetween / D€Nyithin , Where

— Densetween = >, ; Ail (8 # &) / >_i;1(8i # &) is the between-community
density

- Denwiin = >, ; Al (8 =) / >_;;1(& = &) is the within-community density.
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Empirical Study: Yelp Dataset
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Empirical Study: Yelp Dataset
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Empirical Study: Yelp Dataset
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Conclusion

= We propose a distributed community detection (DCD) algorithm to tackle
community detection task in large scale networks.

— the communication cost is low
— no further iterative algorithm is used on workers

— both the computational complexity and the storage requirements are much
lower

» Paper: https://www.sciencedirect.com/science/article/pii
» Code: https://github.com/lkerlz/dcd
= Slide: https://ikerlz.github.io/uploads/DSBM.pdf
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