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Introduction

• Communities in Yelp dataset (https://www.yelp.com/dataset)

https://www.yelp.com/dataset


Introduction

• Community detection is a fundamental task within network analysis
• Numerous methodologies exist for this task.:

– Likelihood based methods (Zhao et al. 2012)
– Convex Optimization (Chen et al., 2012)
– Methods of moments (Anandkumar et al., 2014)
– Spectral clustering (Rohe et al., 2011; Lei and Rinaldo, 2015);



Introduction

• What if the network is of large scale? ⇒ great computational power
• privacy? ⇒ stored in a distributed manner across various data centers.

Can we consider a distributed algorithm for the spectral clustering?



Distributed Community Detection under SBM

• Adjacency matrix A = (aij)

• aij = 1 indicates the ith user
follows the jth user; otherwise
aij = 0.



Stochastic Block Model: Membership matrix

• Θ = (Θ1, · · · ,ΘN)
⊤ ∈ RN×K

• For the ith row of Θ, only the
gith element takes 1 and the
others are 0.

• The membership matrix of the
left figure is:

1 0
1 0
0 1
0 1


.



Stochastic Block Model: Connectivity Matrix

• B ∈ RK×K with full rank
• The connection probability

between the kth and lth
community is Bkl

• The element Aij in the adjacency
matrix is generated independently
from Bernoulli(Bgigj) distribution.



Spectral Clustering under SBM

Lemma 1. (Lemma 3.1 in Rohe et al. (2011)).
The eigen-decomposition of L takes the form L = UΣU⊤, where
U = (U1, · · · ,UN)

⊤ ∈ RN×K collects the eigen-vectors and Σ ∈ RK×K is a
diagonal matrix. Further we have U = Θµ, where µ is a K × K orthogonal
matrix and Θi = Θj if and only if Ui = Uj.

• L = D−1/2AD−1/2, where A = E(A) and D = E(D)

• U only has K distinct rows and the ith row is equal to the jth row if the
corresponding two nodes belong to the same community



A Distributed Algorithm

Identify pseudo centers:

Step 1:

• Conduct spectral clustering on master server 

to identify pseudo centers.

Step 2:

• Broadcast pseudo centers to workers

• Complete distributed community detection task 

using a SVD type algorithm.



Pilot Network Spectral Clustering on Master Server

• Suppose we have l network nodes on the master ⇒ pilot nodes.
• In addition we distribute the pilot nodes both on master and workers.

• Conduct the spectral clustering on
the pilot network A0 ∈ Rl×l and
obtain the clustering centers
Ĉ0 =

(
Ĉ0k : 1 ≤ k ≤ K

)⊤.
• Determine the indexes of the kth

pseudo centers as
ik = argmini

∥∥∥Û0i − Ĉ0k

∥∥∥2
2
.

• Broadcast the index set of pseudo
centers C = {i1, · · · , iK} to workers.

Master: 𝑙 pilot nodes

Worker 1: 

𝑛1 + 𝑙 network nodes

Worker 2: 

𝑛2 + 𝑙 network nodes

…

Worker M: 

𝑛𝑀 + 𝑙 network nodes



Community Detection onWorkers

• Suppose we distribute nm network nodes as well as the pilot nodes on the
m th worker ⇒ n̄m = l + nm.

• Denote the corresponding sub-adjacency matrix as A(Sm) ∈ Rn̄m×l.
• Permute the row indexes of A(Sm) to ensure that

A
(
Sm
)
=
(

A(Sm)⊤
1 ,A(Sm)

⊤

2

)⊤
with A(Sm)

1 = A0.

• Let D(Sm)
ii =

∑
j A(Sm)

ij and F(Sm)
jj =

∑
i A

(Sm)
ij be the out- and in-degrees of

node i and j in the subnetwork on worker m.
• Define

D(Sm) = diag
{

D(Sm)
ii : 1 ≤ i ≤ n̄m

}
∈ Rn̄m×n̄m

F(Sm) = diag
{

F(Sm)
jj : 1 ≤ j ≤ l

}
∈ Rl×l



Community Detection onWorkers

• The Laplacian version of A(Sm) is given by

L(Sm) =
(

D(Sm)
)−1/2

A(Sm)
(

F(Sm)
)−1/2

∈ Rn̄m×l

• Perform SVD using L(Sm) and denote the top K left singular vector matrix
as Û(Sm).

• For the i th (l + 1 ≤ i ≤ n̄m) node in Sm, the cluster label gi is estimated
by

ĝi = argmin1≤k≤K,ik∈C

∥∥∥Û(Sm)
i − Û(Sm)

ik

∥∥∥
2
.



Extend to Degree-corrected SBM

Let Γ = diag {Γi, 1 ≤ i ≤ N} ∈ RN×N ⇒ E(A) = ΓΘBΘ⊤Γ



Theoretical Properties

Theorem 3.1. (Singular Vector Convergence)
Let λ1,m ≥ λ2,m ≥ · · · ≥ λK,m > 0 be the top K singular values of L(Sm).
Define δm = mini D(Sm)

ii . Then for any ϵm > 0 and δm >
3 log (nm + 2l) + 3 log (4/ϵm), with probability at least 1− ϵm it holds

∥∥∥Û(Sm) − U(Sm)Q(Sm)
∥∥∥

F
≤ 8

√
6

λK,m

√
K log (4 (nm + 2l) /ϵm)

δm
,

where Q(Sm) ∈ RK×K is a K × K orthogonal matrix.
• Remarks:

– The error bound is related to the eigen-gap λK,m
– The upper bound is lower if the minimum out-degree δm is higher



Theoretical Properties

Theorem 3.2. (Bound if Mis-clustering Rates)
Assume some conditions hold. Let R(Sm) denote the ratio of misclustered
nodes on worker m, then we have

R(Sm) = O
(

umK2 log (l/ϵl)

d0bminlλ2
K,0

+
K log (4 (nm + 2l) /ϵm)

λK,mδm
+

umα2
0K + d0α

2
mK

d0d2

)

with probability at least 1− ϵl − ϵm, where um = maxk π
(Sm)
k .

• Remarks:
– The first term is related to the convergence of eigenvectors on the maste
– The second term is determined by convergence of singular vectors on the mth

worker.
– the third term is mainly related to the unbalanced effect αm among the

workers and α0 on the master.



Simulation: Pilot Nodes
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Simulation: Signal Strength

B = ν
{
λIK + (1− λ)1K1⊤K

}
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Simulation: Unbalanced Effect

πmk = 1
K +

(
k − K+1

2
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Simulation: DC-SBM
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Simulation: Large Scale (N = 2× 106, K = 20)
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Simulation: Large Scale (N = 107, K = 5)
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Simulation: Comparison
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Empirical Study: Pubmed Dataset

• The Pubmed dataset consists of 19,717 scientific publications
• Each publication is identified as one of the three classes, i.e., Diabetes

Mellitus Experimental, Diabetes Mellitus Type 1, Diabetes Mellitus Type
2. ⇒ K = 3.

• The sizes of the three classes are 4,103, 7,875, and 7,739 respectively.
• The network link is defined using the citation relationships among the

publications.
• The resulting network density is 0.028%.



Empirical Study: Pubmed Dataset
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Empirical Study: Pubmed Dataset
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Empirical Study: Pubmed Dataset



Empirical Study: Pubmed Dataset

• The Yelp is one of the most popular online review platform and the
dataset contains 200,193 active users in the network.

• If the ith user is a friend of the jth user, then there is a connection
between the two users, i.e., Aij = 1

• The resulting network density is 0.031%
• Define the relative density as RED = Denbetween /Denwithin , where

– Denbetween =
∑

i,j AijI (ĝi ̸= ĝj) /
∑

i,j I (ĝi ̸= ĝj) is the between-community
density

– Denwithin =
∑

i,j AijI (ĝi = ĝj) /
∑

i,j I (ĝi = ĝj) is the within-community density.



Empirical Study: Yelp Dataset
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Empirical Study: Yelp Dataset
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Empirical Study: Yelp Dataset



Conclusion

• We propose a distributed community detection (DCD) algorithm to tackle
community detection task in large scale networks.
– the communication cost is low
– no further iterative algorithm is used on workers
– both the computational complexity and the storage requirements are much

lower

• Paper: https://www.sciencedirect.com/science/article/pii
• Code: https://github.com/Ikerlz/dcd
• Slide: https://ikerlz.github.io/uploads/DSBM.pdf

https://www.sciencedirect.com/science/article/pii/S0167947323001056
https://github.com/Ikerlz/dcd
https://ikerlz.github.io/uploads/DSBM.pdf
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