
A Distributed Community Detection Algorithm
for Large Scale Networks Under Stochastic

Block Models

Zhe Li

Joint work with Shihao Wu and Xuening Zhu

December 1, 2023



Outline

Introduction

Distributed Community Detection under Stochastic Block Model

Theoretical Properties

Simulation Studies

Empirical Study



Introduction

• Communities in Yelp dataset (https://www.yelp.com/dataset)

https://www.yelp.com/dataset


Introduction

• Community detection is a fundamental task within network analysis
• Numerous methodologies exist for this task.:

– Likelihood based methods (Zhao et al. 2012)
– Convex Optimization (Chen et al., 2012)
– Methods of moments (Anandkumar et al., 2014)
– Spectral clustering (Rohe et al., 2011; Lei and Rinaldo, 2015);



Introduction

• What if the network is of large scale? ⇒ great computational power
• privacy? ⇒ stored in a distributed manner across various data centers.

Can we consider a distributed algorithm for the spectral clustering?



Distributed Community Detection under SBM

• Adjacency matrix A = (aij)

• aij = 1 indicates the ith user
follows the jth user; otherwise
aij = 0.



Stochastic Block Model: Membership matrix

• Θ = (Θ1, · · · ,ΘN)
⊤ ∈ RN×K

• For the ith row of Θ, only the
gith element takes 1 and the
others are 0.

• The membership matrix of the
left figure is:

1 0
1 0
0 1
0 1


.



Stochastic Block Model: Connectivity Matrix

• B ∈ RK×K with full rank
• The connection probability

between the kth and lth
community is Bkl

• The element Aij in the adjacency
matrix is generated independently
from Bernoulli(Bgigj) distribution.



Spectral Clustering under SBM

Lemma 1. (Lemma 3.1 in Rohe et al. (2011)).
The eigen-decomposition of L takes the form L = UΣU⊤, where
U = (U1, · · · ,UN)

⊤ ∈ RN×K collects the eigen-vectors and Σ ∈ RK×K is a
diagonal matrix. Further we have U = Θµ, where µ is a K × K orthogonal
matrix and Θi = Θj if and only if Ui = Uj.

• L = D−1/2AD−1/2, where A = E(A) and D = E(D)

• U only has K distinct rows and the ith row is equal to the jth row if the
corresponding two nodes belong to the same community



A Distributed Algorithm

Identify pseudo centers:

Step 1:

• Conduct spectral clustering on master server 

to identify pseudo centers.

Step 2:

• Broadcast pseudo centers to workers

• Complete distributed community detection task 

using a SVD type algorithm.



Pilot Network Spectral Clustering on Master Server

• Suppose we have l network nodes on the master ⇒ pilot nodes.
• In addition we distribute the pilot nodes both on master and workers.

• Conduct the spectral clustering on
the pilot network A0 ∈ Rl×l and
obtain the clustering centers
Ĉ0 =

(
Ĉ0k : 1 ≤ k ≤ K

)⊤.
• Determine the indexes of the kth

pseudo centers as
ik = argmini

∥∥∥Û0i − Ĉ0k

∥∥∥2
2
.

• Broadcast the index set of pseudo
centers C = {i1, · · · , iK} to workers.

Master: 𝑙 pilot nodes

Worker 1: 

𝑛1 + 𝑙 network nodes

Worker 2: 

𝑛2 + 𝑙 network nodes

…

Worker M: 

𝑛𝑀 + 𝑙 network nodes



Community Detection onWorkers

• Suppose we distribute nm network nodes as well as the pilot nodes on the
m th worker ⇒ n̄m = l + nm.

• Denote the corresponding sub-adjacency matrix as A(Sm) ∈ Rn̄m×l.
• Permute the row indexes of A(Sm) to ensure that

A
(
Sm
)
=
(

A(Sm)⊤
1 ,A(Sm)

⊤

2

)⊤
with A(Sm)

1 = A0.

• Let D(Sm)
ii =

∑
j A(Sm)

ij and F(Sm)
jj =

∑
i A

(Sm)
ij be the out- and in-degrees of

node i and j in the subnetwork on worker m.
• Define

D(Sm) = diag
{

D(Sm)
ii : 1 ≤ i ≤ n̄m

}
∈ Rn̄m×n̄m

F(Sm) = diag
{

F(Sm)
jj : 1 ≤ j ≤ l

}
∈ Rl×l



Community Detection onWorkers

• The Laplacian version of A(Sm) is given by

L(Sm) =
(

D(Sm)
)−1/2

A(Sm)
(

F(Sm)
)−1/2

∈ Rn̄m×l

• Perform SVD using L(Sm) and denote the top K left singular vector matrix
as Û(Sm).

• For the i th (l + 1 ≤ i ≤ n̄m) node in Sm, the cluster label gi is estimated
by

ĝi = argmin1≤k≤K,ik∈C

∥∥∥Û(Sm)
i − Û(Sm)

ik

∥∥∥
2
.



Extend to Degree-corrected SBM

Let Γ = diag {Γi, 1 ≤ i ≤ N} ∈ RN×N ⇒ E(A) = ΓΘBΘ⊤Γ



Theoretical Properties

Theorem 3.1. (Singular Vector Convergence)
Let λ1,m ≥ λ2,m ≥ · · · ≥ λK,m > 0 be the top K singular values of L(Sm).
Define δm = mini D(Sm)

ii . Then for any ϵm > 0 and δm >
3 log (nm + 2l) + 3 log (4/ϵm), with probability at least 1− ϵm it holds

∥∥∥Û(Sm) − U(Sm)Q(Sm)
∥∥∥

F
≤ 8

√
6

λK,m

√
K log (4 (nm + 2l) /ϵm)

δm
,

where Q(Sm) ∈ RK×K is a K × K orthogonal matrix.
• Remarks:

– The error bound is related to the eigen-gap λK,m
– The upper bound is lower if the minimum out-degree δm is higher



Theoretical Properties

Theorem 3.2. (Bound if Mis-clustering Rates)
Assume some conditions hold. Let R(Sm) denote the ratio of misclustered
nodes on worker m, then we have

R(Sm) = O
(

umK2 log (l/ϵl)

d0bminlλ2
K,0

+
K log (4 (nm + 2l) /ϵm)

λK,mδm
+

umα2
0K + d0α

2
mK

d0d2

)

with probability at least 1− ϵl − ϵm, where um = maxk π
(Sm)
k .

• Remarks:
– The first term is related to the convergence of eigenvectors on the maste
– The second term is determined by convergence of singular vectors on the mth

worker.
– the third term is mainly related to the unbalanced effect αm among the

workers and α0 on the master.



Simulation: Pilot Nodes
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Simulation: Signal Strength

B = ν
{
λIK + (1− λ)1K1⊤K

}
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Simulation: Unbalanced Effect

πmk = 1
K +

(
k − K+1

2
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Simulation: DC-SBM
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Simulation: Large Scale (N = 2× 106, K = 20)
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Simulation: Large Scale (N = 107, K = 5)
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Simulation: Comparison
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Empirical Study: Pubmed Dataset

• The Pubmed dataset consists of 19,717 scientific publications
• Each publication is identified as one of the three classes, i.e., Diabetes

Mellitus Experimental, Diabetes Mellitus Type 1, Diabetes Mellitus Type
2. ⇒ K = 3.

• The sizes of the three classes are 4,103, 7,875, and 7,739 respectively.
• The network link is defined using the citation relationships among the

publications.
• The resulting network density is 0.028%.



Empirical Study: Pubmed Dataset
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Empirical Study: Pubmed Dataset
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Empirical Study: Pubmed Dataset



Empirical Study: Pubmed Dataset

• The Yelp is one of the most popular online review platform and the
dataset contains 200,193 active users in the network.

• If the ith user is a friend of the jth user, then there is a connection
between the two users, i.e., Aij = 1

• The resulting network density is 0.031%
• Define the relative density as RED = Denbetween /Denwithin , where

– Denbetween =
∑

i,j AijI (ĝi ̸= ĝj) /
∑

i,j I (ĝi ̸= ĝj) is the between-community
density

– Denwithin =
∑

i,j AijI (ĝi = ĝj) /
∑

i,j I (ĝi = ĝj) is the within-community density.



Empirical Study: Yelp Dataset

0.00

0.01

0.02

0.03

0 1000 2000 3000 4000
Degree

D
en

si
ty



Empirical Study: Yelp Dataset
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Empirical Study: Yelp Dataset



Conclusion

• We propose a distributed community detection (DCD) algorithm to tackle
community detection task in large scale networks.
– the communication cost is low
– no further iterative algorithm is used on workers
– both the computational complexity and the storage requirements are much

lower

• Paper: https://www.sciencedirect.com/science/article/pii
• Code: https://github.com/Ikerlz/dcd
• Slide: https://ikerlz.github.io/uploads/DSBM.pdf

https://www.sciencedirect.com/science/article/pii/S0167947323001056
https://github.com/Ikerlz/dcd
https://ikerlz.github.io/uploads/DSBM.pdf
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